LaseViewラインアップ
LHB(最新)

大口径・高出力対応ビームプロファイラ

  • ~100 mm, ~100 W/cm2
  • M2, ダイバージェンス測定機能付き
  • 伝搬損失測定可能, 安価な市販カメラも使用可能

LaseViewカメラセットシリーズ

  • LaseViewとカメラがセットになったスターターキット
  • カメラ選定の手間が省ける
  • レーザーの仕様に合わせて選ぶだけの簡単セット

ビームプロファイラ with M2 プラットフォームソフト LaseViewとは?

カタログ(PDF)はこちら

ビームプロファイラ with M2 プラットフォームソフト LaseViewは、市販のCCDカメラをビームプロファイラとして利用することができる、高機能で汎用的なレーザービームプロファイラのソフトウェアです。市販されているCCDカメラやCMOSカメラを利用することで、 極めて低コストかつ実用的なビーム計測システムを容易に構築することができます。

特徴は

詳細な機能は「LaseView仕様詳細」タブや「解析機能の詳細」タブをご覧ください。

LaseView6

図 LaseView6の画面

集光特性に関わる重要なパラメーターであるM2(エムスクエア)ビーム品質を、標準機能で手軽に測定することができます。
M2ビーム品質はレーザー加工にとって非常に重要なパラメーターです。M2ビーム品質測定に関わる光学系のセッティングや解析の手順はこちら

M2解析結果図 M2ビーム品質測定の画面

光伝搬特性に関わる重要なパラメーターであるビーム広がり角(ダイバージェンス)を、標準機能で手軽に測定することができます。ビーム広がり角(ダイバージェンス)はレーザー伝搬にとって非常に重要なパラメーターです。ビーム広がり角解析の手順はこちら

ビーム広がり角解析結果図

ビーム安定性に関わる重要なパラメーターであるビームポインティング経時変化を、標準機能で手軽に測定することができます。ビームポインティング経時変化はレーザー安定性にとって非常に重要なパラメーターです。ビームポインティング経時変化の解析の手順はこちら

ビームポインティング

 

従来製品とLaseViewの比較

市販されているCCDカメラやCMOSカメラを利用することで、極めて低コストかつ実用的なビーム計測システムを容易に構成することができます。また、低価格なカメラを利用することができるため、複数台のカメラを用いたビームモニタリングシステムを低コストで構築することができます。

LaseView 従来製品
主な販売方式 ソフトのみ
(カメラはオプションA)
カメラ+ソフト
他社製CCDカメラの使用
(5万円〜)
2ビーム品質測定機能 ◎*
(標準機能)

(別売り50万円〜)
ソフトの価格 25万円
1台分の価格 30万円〜
(ソフト代+カメラ代)
50万円〜
4台分の価格 45万円〜
(ソフト代+4台分のカメラ代)
200万円〜
ビームプロファイラ
+M2ビーム品質測定機能
30万円〜
(ソフト代+カメラ代)
100万円〜
(50万円+50万円)
測定可能な最小ビーム径 2 μm ~
微小ビーム測定光学系セットの取付け時)
30 μm ~
測定可能な最大ビーム径  ~100 mm
大口径・高出力対応ビームプロファイラとして販売)
~24 mm
主な言語 パソコンの言語に依存(日本語のパソコンの場合は日本語、英語のパソコンの場合は英語) 英語
イメージ LaseView conventional-product

*集光レンズはF値50~100(例えばビーム径1 mmのとき焦点距離50 mm~100 mm)程度のレンズがお勧めです

カメラが安価なため壊しても平気、使い捨て気分で使用できる、準備が簡単、ソフトが使いやすいという感想をユーザー様よりいただいております

 

LaseViewの使用例

サンプル画像

image_example

図 左からHe-Neレーザーの近視野像、Ti:Sapphireレーザーの遠視野象(F=3.3の放物面鏡で集光)、マルチモードファイバから出力されたLD光の集光

レーザー加工用レーザービーム位置モニタリングシステム(1ソフトウェア+2カメラ)

レーザー加工では、レーザー光を平行ビームの状態で伝送した後に、レンズにより集光して対象物に照射します。レンズに入射する平行ビームの方向や位置が変化すると、集光点の位置が変化したりビームプロファイルが変化したりして、精密な加工を行うことができません。ビームの方向(ポインティングベクトル)とレンズ上でのビーム中心の位置を正確に保つため、2つのビームプロファイラを用いた光学系が用いられます。入射する平行ビームの位置(例えばビーム重心)を2か所で計測し、両方の位置でビームが所定の位置に来るよう、2枚のミラーを使って精密な光軸調整を行います。

図 レーザー加工の際にレーザービームの位置をモニタリングしている様子

レーザー加工(ダメージ)試験用レーザービームモニタリングシステム(1ソフトウェア+4カメラ)

レーザー加工(ダメージ)試験では、サンプル位置での正確なビームプロファイルの計測と、照射後のダメージ有無の判断が必要です。また、多数のサンプルの測定のためサンプル交換時の位置再現性が重要です。そのため複数のCCDを用いた光学系が用いられます。
(なお、LaseViewはカラー画像の表示に対応しているため、カラーCCDカメラを用いた観察用にも利用できます。)

図 レーザー加工(ダメージ)試験で複数のCCDを使用して計測している様子

顕微鏡光学システム

CCDカメラに鏡筒を取り付けるだけで、ビームプロファイラを顕微鏡として利用できます。可視域(400~700 nm)で色収差が補正されています。カラーカメラを使用すれば、フルカラー表示も可能です。LEDライトなどで照明することで、ファイバー端面など、様々な物体の観察が可能です。

・倍率:10倍、20倍、40倍(注文時に倍率を指定)
・NA:0.25(10倍)、0.40(20倍)、0.65(40倍)
・使用波長範囲:400~700 nm
・作動距離:5.5 mm(10倍)、1.7 mm(20倍)、0.6 mm(40倍)
・長さ:約180 mm

20160407_075721919_iOS20160407_075730932_iOSファイバー端面x20

光ファイバー測定システム

光ファイバーの端面(FC/APCコネクタ)から射出された波長975 nmのレーザー光を、微小ビーム測定光学系で測定しました。モードフィールド径は約6.4 μmであることがわかります。これは光ファイバーの仕様(6.6±0.7μm @ 980nm)と一致します。また、測定された強度分布(白線)とガウシアンによるフィッティング(赤線)は、HE11モードのニアフィールドパターンがベッセル関数となるため僅かに異なりますが、ほぼ一致していることも分かります。なお、ビームの縦横比が僅かに異なるのは、コネクタが斜め研磨であるためです。ファイバー端で屈折することで横方向が小さくなっていることも分かります。

  • 光ファイバーの端面にダメージがないことが分かる
  • 光ファイバーのモードフィールド径が分かる
  • 強度分布がガウシアンであることが分かる
  • コネクタが斜め研磨であることが分かる

ファイバー測定光学系 ファイバ端から出たビームの測定例

laseview_inquiry

LaseViewラインアップ(仕様詳細、カメラオプション、その他のオプション、用語解説、FAQ)

*ビームプロファイルの測定にはカメラが必要です。推奨カメラは、下記の「カメラオプション」タブをご覧ください。
*カメラが最初からセットになっているカメラセットは、別ページの「LaseViewカメラセットシリーズ」をご覧ください。

*ビーム強度が強い場合や、ビーム径が小さい場合は、下記の「その他のオプション」タブをご覧ください。
*ビーム径が大きい場合は、別ページの「大口径・高出力対応ビームプロファイラ」をご覧ください。

*開始ボタンを押しても画像が表示されない場合は、[カメラ]タブの[カメラ設定]の[ピクセル形式]で設定してから開始してください。

LaseViewの仕様詳細

特徴

  • リボンUIユーザインタフェース
  • 画像ロギング機能
  • ビームポインティング経時変化の解析
  • ビーム広がり角の解析
  • ヒストグラム表示
  • ビームの空間的な強度分布の測定
  • ビーム径の測定
  • M2の測定
  • 30 μm以下の微小ビームの測定
  • リアルタイムな画像平均化機能
  • リアルタイムなコントラスト調整機能(16 bit, 65536階調の広いダイナミックレンジ)
  • 画像バッファ機能(複数の画像をメモリ上に蓄積し順次表示可能)
  • TIFF形式での画像保存機能
  • ハードウェア・アクセラレーションによるスムーズな表示機能
  • 32 bitおよび64 bit Windowsに対応

動作環境

Windows 7
Windows 8、Windows 8.1
Windows 10
CPU速度:Intel社製Core i3 2GHz 又は他社同等以上
空きメモリ:512MB 以上
※ ただし、この環境を満たすすべてのパソコンについて、動作を保証するものではありません。
※ 本ソフトウェアの動作には、.NET Framework 4.5 以上が必要です。
.NET Framework のバージョンの確認は下記から行えます。
http://msdn.microsoft.com/ja-jp/library/hh925568(v=vs.110).aspx
※ バージョンによって本マニュアルの画面と実際の画面が異なる事がなりますが、問題なく使用できます。

解析機能

  • ラインプロファイル(Line Profile)
    十字線上のラインプロファイル表示(Gauss、Lorentz、Sech関数フィッティング及びFWHM解析機能付き)
  • 積分プロファイル(Integration Profile)
    水平/垂直方向に平均化したプロファイルの表示(ラインプロファイルと同様の解析機能付き)
  • 最大値投影プロファイル(Max. Intensity Projection)
    水平/垂直方向の正射影(最大値)プロファイルの表示(ラインプロファイルと同様の解析機能付き)
  • 2点間距離(Point-Point Distance)
    画面上で任意の2点間距離の測定
  • ピーク積分(Peak Integration)
    円外をバックグラウンドとして円内の積分値の解析とカーソル上の光強度を解析

解析例

ラインプロファイル機能
十字線上のラインプロファイルを表示します(白線)。ビームプロファイルのFWHMを求めたり、Gauss、Lorentz、Sech関数でフィッティングすることができます(赤線はSech2関数でフィッティングしたもの)。十字線は回転させることもできます。

ラインプロファイル機能

下の動画は、LaseViewのラインプロファイル解析モードで、ピーク検出のチェックをオンにしたときの、ピークのリアルタイム追従機能を示したデモ動画です。

積分プロファイル機能
水平/垂直方向に平均化したプロファイルを表示します。ラインプロファイルと同様の解析機能を使うことができます。

積分プロファイル機能

最大値投影プロファイル機能
水平/垂直方向の正射影(最大値)のプロファイルのみを表示します。ラインプロファイルと同様の解析機能を使うことができます。下図ではFWHMを測定しています。

最大値投影プロファイル機能

2点間距離測定機能
画面上で任意の2点間距離を測定できます。下図では、緑色で示されているプロファイルの直径が826.8 μmであることが分かります。
2点間距離測定機能

ピーク積分機能
円外をバックグラウンドとして園内の積分値の解析を行います。画面上に出てくる円の位置・大きさを調整し、ビームが円内に十分に収まるように調節します。下図のような状態で「ピーク検出」をクリックすると、ピーク位置が十字カーソルで示されます。

ピーク積分機能

各機能の中で使用されている表記の説明

それぞれの機能の中で使用されている表記の説明を下表に示します。

機能 表記 説明
ラインプロファイル
積分プロファイル
最大値投影プロファイル
FWHM X 水平方向の半値全幅
FWHM Y 垂直方向の半値全幅
FW@1/e X 水平方向の1/eでの全幅
FW@1/e Y 垂直方向の1/eでの全幅
FW@1/e2 X 水平方向の1/(e×e)での全幅
FW@1/e2 Y 垂直方向の1/(e×e)での全幅
Center X 水平方向の中心座標
Center Y 垂直方向の中心座標
Height X 水平方向のピークの高さ
Height Y 垂直方向のピークの高さ
Position X 水平方向のカーソルの位置
Position Y 垂直方向のカーソルの位置
積分プロファイル Max X 水平方向の信号強度の最大値
Min X 水平方向の信号強度の最小値
Max Y 垂直方向の信号強度の最大値
Min Y 垂直方向の信号強度の最小値
2点間距離 Distance 二点間距離(メートル単位)
Distance 二点間距離(ピクセル単位)
Pos. X1 一点目のX座標
Pos. Y1 一点目のY座標
Pos. X2 二点目のX座標
Pos. Y2 二点目のY座標
ピーク積分 Intensity /cm2 カーソル位置の強度(cm^-2単位)
Raw Value Intensity値のデジタルカウント値
Background バックグラウンドの信号強度
Integral バックグラウンド減算した積分値
Raw Integral バックグラウンド減算しない積分値
Position X 水平方向のカーソルの位置
Position Y 垂直方向のカーソルの位置
解析機能の詳細

1.M2ビーム品質の解析機能

光学系のセッティングの手順を以下に示します。

  1. レーザービームをF値(焦点距離/ビーム直径)が50~100程度のレンズで集光してください。
  2. ビームウエストの中心から±50mm~±150mmの範囲で、ビームに沿ってCCDカメラがスライドできるように、定規や光学レールなどを設置してください。
  3. レーザービームが強すぎないように、入射光量やゲイン/露光時間などを調節してください。

CCD カメラ配置

M2 ビーム品質解析の手順を以下に示します。

  1. 「ファイル」タブの「フォルダを開く」をクリックし、画像を保存するための空のフォルダを作成(または指定)してください。
  2. レーザービームの軸上で、ビームウエストを中心に前後±50mm~±150mmの範囲で10~30枚程度のビームプロファイルを保存してください。手順は以下の通りです。
  3. (ア)ビームウエストのビーム直径を確認する。
  4. (イ)ビーム直径がビームウエストのビーム直径の5倍程度となる位置までCCDカメラを移動する。
  5. (ウ)CCDカメラを固定し、ノイズの少ない良好な画像が得られるよう光量とCCDの露光時間を調節する。
  6. (エ)「ファイル」タブの「画像を保存」をクリックし、ファイル名テキストボックスに現在のCCDの位置を算用数字(半角)で入力し、画像を保存する。このとき、数字の後ろに単位を付けることができ、nm、μm(um)、mm、cm、m(すべて半角)が利用できるが、単位を省略した場合はmmとして処理される。例. 30mm.tif、100mm.tif、150mm.tif など
  7. (オ)2~10mm間隔でCCDカメラを移動し、(ウ)~(エ)を繰り返す。このとき、移動間隔は等間隔である必要はなく、ビームウエスト付近をより狭い間隔で測定すれば、精度が向上する場合がある。
  8. 「一括解析」タブの「M2ビーム品質」ボタンをクリックしてください。M2ビーム品質解析ウィンドウが表示されるので、右上のテキストボックスにレーザー波長をnm単位で入力してください。
  9. 「解析の実行」ボタンをクリックすると解析が実行され、成功すれば結果がグラフに表示されます。

※解析結果はビーム半径で表示されます

解析結果の例1

2.ビーム広がり角の解析機能

ビーム広がり角解析の手順を以下に示します。

  1. 「ファイル」タブの「フォルダを開く」をクリックし、画像を保存するための空のフォルダを作成(または指定)してください。
  2.  2か所以上で測定を行い、同じフォルダに画像を保存してください。その際にファイル名に測定位置を含めてください。例:1.5m、25cm、等。
  3. 「一括解析」タブの[広がり角]ボタンをクリックしてください。広がり角の一括解析ウィンドウが表示されます。
  4. [解析の実行]ボタンをクリックすると解析が実行され、成功すれば結果がグラフに表示されます。

解析結果の例

3.ビームポインティング経時変化の解析機能

ビームポインティング経時変化の解析の手順を以下に示します。

  1. 「ファイル」タブの「フォルダを開く」をクリックし、画像を保存するための空のフォルダを作成(または指定)してください。
  2. 画像ロギング機能を使い、適度な時間間隔で画像を保存してください。
  3. [ポインティング]ボタンをクリックしてください。
  4. [解析の実行]をクリックするとビーム重心のX座標とY座標の計時変化がグラフ表示されます。経過時間はファイルに埋め込まれた撮影日時に基づいて計算されます。

5.3.4

カメラオプション

LaseViewをビームプロファイラとして利用するためにはカメラが必要です。
CCDカメラが最初からセットになったLaseViewカメラセットシリーズもご用意しております。

* パルス光の測定にはトリガー付きカメラが適しています。
* CWレーザーやナノ秒レーザーの測定には、カバーガラスなしのカメラが適しています。
* CCDカメラは波長1320 nmまで感度がありますが、ビームプロファイル測定には誤差が生じます。
1100 nm以上の長波長帯域を精度よく計測するには、赤外線カメラの使用をお勧めします。

CCDカメラ

LaseViewにおいて動作が確認できているCCDカメラをご紹介します。
その中でもお勧めは、安価なImaging Source社USB 2.0 CCDモノクロカメラ「DMK 21AU04」です。

Imaging Source社 USB 2.0 CCD モノクロカメラ

製品 解像度[pixel] フレーム
レート※1
センサー トリガー※2 カバーガラス 価格(税抜き)
DMK 21AU04 640×480 60 fps 1/4型 なし あり ¥57,000
DMK 21BU04 640×480 60 fps 1/4型 あり あり ¥72,000
DMK 31AU03 1024×768 30 fps 1/3型 なし あり ¥103,000
DMK 31BU03 1024×768 30 fps 1/3型 あり あり ¥115,000
DMK 41AU02 1280×960 15 fps 1/2型 なし あり ¥110,000
DMK 41BU02 1280×960 15 fps 1/2型 あり あり ¥115,000
DMK 51AU02 1600×1200 12 fps 1/1.8型 なし あり ¥152,000
DMK 51BU02 1600×1200 12 fps 1/1.8型 あり あり ¥164,000
DMK 51BU02.WG 1600×1200 12 fps 1/1.8型 あり なし ¥228,000
USB2.0 ケーブル 2m ¥1,000

Imaging Source社 USB 3.0 CCD モノクロカメラ

製品 解像度[pixel] フレーム
レート※1
センサー トリガー※3 カバーガラス 価格(税抜き)
DMK 23U618 640×480 120 fps 1/4型 あり あり ¥59,800
DMK 23U445 1280×960 30 fps 1/3型 あり あり ¥69,800
DMK 23U274 1600×1200 20 fps 1/1.8型 あり あり ¥114,800
USB3.0ケーブル 2m ¥3,000

※1 実際の表示速度はPCの性能や状態により低下することがあります。
※2 BNCコネクタ付き。
※3 12-pinコネクタ付き。
※ 上記すべてのカメラについて、動作を保証するものではありません。
※ PCやケーブルの状態によりカメラが正常に動作しないことがあります。
※ USBケーブルは専用品(別売り)をお勧めいたします。
※ iDS社、Basler社のカメラでも動作確認済みです。

CMOSカメラ

CMOSカメラは、CCDカメラより安価にご購入いただけます
また、感度は劣りますが、応答速度などの点でCCDカメラより優れています。

iDS社 USB 3.0 CMOS モノクロカメラ

形式 解像度 フレームレート※1 センサー 価格
UI-3370CP-M-GL 2048 x 2048 80 fps 1型

Thorlabs社 USB 2.0 CMOS モノクロカメラ

形式 解像度 フレームレート※1 センサー 価格
DCC1545M 1280 x 1024 25 fps 1/2型 ¥46,100

※1 実際の表示速度はPCの性能や状態により低下することがあります。
※ Thorlabs社のカメラはiDS社のOEM品のため、動作には同社製ドライバーが必要です。
既にThorlabs社ドライバをインストールされている場合は、アンインストール後、IDS社ドライバをインストールしてください。
IDS社ドライバーはここから入手してください。

※ PCやケーブルの状態によりカメラが正常に動作しないことがあります。※1 実際の表示速度はPCの性能や状態により
低下することがあります。

POINT GREY社 USB 2.0カメラ

グレード 形式 解像度 フレームレート センサー 価格
Chameleon USB 2.0 CMLN-13S2M-CS 1296 x 964 18 FPS Sony ICX445 CCD, 1/3″, 3.75 µm お問い合わせ下さい
FireflyMV FireWire, USB2.0 FMVU-03MTM-CS 752 x 480 60 FPS Aptina MT9V022 CMOS, 1/3″, 6.0 µm

POINT GREY社 USB3カメラ

グレード 形式 解像度 フレームレート センサー 価格
Black Fly S BFS-U3-13Y3M-C 1280 x 1024 170 FPS ON Semi PYTHON 1300 CMOS, 1/2″, 4.8 μm お問い合わせ下さい
BFS-U3-32S4M-C 2048 x 1536 118 FPS Sony IMX252 CMOS, 1/1.8″, 3.45 µm
BFS-U3-51S5M-C 2448 x 2048 75 FPS Sony IMX250 CMOS, 2/3″, 3.45 µm
グレード 形式 解像度 フレームレート センサー 価格
Black Fly USB 3.0 BFLY-U3-03S2M-CS 648 x 488 84 FPS Sony ICX424 CCD, 1/3″, 7.4 µm お問い合わせ下さい
BFLY-U3-05S2M-CS 808 x 608 50 FPS Sony ICX693 CCD, 1/3″, 6.0 µm
BFLY-U3-13S2M-CS 1288 x 964 30 FPS Sony ICX445 CCD, 1/3″, 3.75 µm
BFLY-U3-20S4M-CS 1624 x 1224 15 FPS Sony ICX274 CCD, 1/1.8″, 4.4 µm
BFLY-U3-23S6M-C 1920 x 1200 41 FPS Sony IMX249 CMOS, 1/1.2″, 5.86 µm
BFLY-U3-50H5M-C 2448 x 2048 7.5 FPS Sharp RJ32S4AA0DT CCD, 2/3″, 3.45 µm
グレード 形式 解像度 フレームレート センサー 価格
Chameleon 3 USB CM3-U3-13S2M-CS 1288 x 964 30 FPS Sony ICX445 CCD, 1/3″, 3.75 µm お問い合わせ下さい
CM3-U3-13Y3M-CS 1280 x 1024 149 FPS ON Semi PYTHON 1300 CMOS, 1/2″, 4.8 μm
CM3-U3-28S4M-CS 1928 x 1448 13 FPS Sony ICX818 CCD, 1/1.8″, 3.69 µm
CM3-U3-31S4M-CS 2048 x 1536 55 FPS Sony IMX265 CMOS, 1/1.8″, 3.45 µm
CM3-U3-50S5M-CS 2448 x 2048 35 FPS Sony IMX264 CMOS, 2/3″, 3.45 µm
グレード 形式 解像度 フレームレート センサー 価格
Flea3 USB 3.0 FL3-U3-13E4M-C 1280 x 1024 60 FPS e2v EV76C560 CMOS, 1/1.8″, 5.3 µm お問い合わせ下さい
FL3-U3-13Y3M-C 1280 x 1024 150 FPS ON Semi VITA 1300 CMOS, 1/2″, 4.8 μm
FL3-U3-20E4M-C 1600 x 1200 59 FPS e2v EV76C5706F CMOS, 1/1.8″, 4.5 µm
グレード 形式 解像度 フレームレート センサー 価格
Grasshopper3 USB 3.0 GS3-U3-14S5M-C 1384 x 1036 30 FPS Sony ICX285 CCD, 2/3″, 6.45 µm お問い合わせ下さい
GS3-U3-15S5M-C 1384 x 1032 45 FPS Sony ICX825 CCD, 2/3″, 6.45 µm
GS3-U3-23S6M-C 1920 x 1200 163 FPS Sony IMX174 CMOS, 1/1.2″, 5.86 µm
GS3-U3-28S4M-C 1928 x 1448 26 FPS Sony ICX687 CCD, 1/1.8″, 3.69 µm
GS3-U3-28S5M-C 1920 x 1440 26 FPS Sony ICX674 CCD, 2/3″, 4.54 µm
GS3-U3-32S4M-C 2048 x 1536 121 FPS Sony IMX252 CMOS, 1/1.8″, 3.45 µm
GS3-U3-41C6M-C 2048 x 2048 90 FPS CMOSIS CMV4000-3E5 CMOS, 1″, 5.5 µm
GS3-U3-41C6NIR-C 2048 x 2048 90 FPS CMOSIS CMV4000-3E12 CMOS, 1″, 5.5 µm
GS3-U3-41S4M-C 2016 x 2016 18 FPS Sony ICX808 CCD, 1/1.8″, 3.1 µm
GS3-U3-50S5M-C 2448 x 2048 15 FPS Sony ICX625 CCD, 2/3″, 3.45 µm
GS3-U3-51S5M-C 2448 x 2048 75 FPS Sony IMX250 CMOS, 2/3″, 3.45 µm
GS3-U3-60QS6M-C 2736 x 2192 25 FPS Sony ICX694 CCD, 1″, 4.54 µm
GS3-U3-60S6M-C 2736 x 2192 13 FPS Sony ICX694 CCD, 1″, 4.54 µm
GS3-U3-89S6M-C 4096 x 2160 43 FPS Sony IMX255 CMOS, 1″, 3.45 µm
GS3-U3-91S6M-C 3376 x 2704 9 FPS Sony ICX814 CCD, 1″, 3.69 µm
GS3-U3-120S6M-C 4240 x 2824 7 FPS Sony ICX834 CCD, 1″, 3.1 µm
GS3-U3-123S6M-C 4096 x 3000 30 FPS Sony IMX253 CMOS, 1.1″, 3.45 µm

赤外線カメラ・ドライバーセット

波長1100 nm以上のレーザーの観察には赤外線カメラが必要です。
赤外線カメラ用のドライバーは¥10万円(税抜き)で追加することができます。
カメラセットの詳細につきましては、LaseViewカメラセットシリーズをご覧ください。

その他のオプション

オプションの選び方

レーザーの仕様 参考値 推奨するオプション
パワー < 100 mW 1.NDフィルターセットの挿入を推奨
< 1 W (垂直偏光の場合)
< 10 W (水平偏光の場合)
2.ビームスプリッタ付き減衰光学系セットを推奨
ビーム径 > 30 um
< 30 um 3.微小ビーム径測定光学系セットを推奨

1.NDフィルタセットとマウント

高強度のレーザービームを測定するためには、減光することができるNDフィルタセットとそのマウントが必要となります。 ND-filter2-295x300図 NDフィルタセット4b9e7807b3a7b89a6752998ab5ea271f図 NDフィルタ斜めマウント仕様

  • 吸収型NDフィルタ
  • OD=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 2.0, 3.0, 4.0
  • 1インチ
  • NDフィルタ斜めマウント付き

価格:¥76,000(税抜き)
納期:約1週間
※ レーザー光のパワーが100 mW以上強くなると吸収型NDフィルタで熱レンズ効果が発生してしまうため、更に減光することができるビームスプリッタ等が必要となります。

2.ビームスプリッタ付き減衰光学系セット

図ビームスプリッタ付き減衰光学系セット

型番:OAS-CA50
価格:¥148,000(税抜き)
納期:約2週間

  • LaseViewカメラセットシリーズ  LaseView-CA50-NCG対応
  • 波長範囲:650-1050 nm
  • パワー :< 1 W(垂直偏光の場合) < 10 W(水平偏光の場合)
  • NDフィルタ付属:OD=2.0, 3.0, 4.0, 5.0

※ カメラに直接取り付けることができます。
※ 偏光方向によりビームスプリッタの減衰率が異なります(P偏光0.9%、S偏光9%)。
※ NDフィルターにはARコートを施してありますが、レーザー光のコヒーレンスが高い場合、干渉縞が生じることがあります。
※ ご指定の入射光条件で適切な減衰率を保証するものではありません。
条件に応じて、適切な減衰率のNDフィルタを追加・交換してご使用ください。
※ ビームの偏光について下記の制約があります。
・水平もしくは垂直方向の直線偏光であること
・ビーム全体にわたり、偏光特性が均一であること
・これらを満たさない場合、ビームスプリッタの偏光依存性により、正しい強度分布が測定できないことがあります。
※ 高さ調節および固定のためのポストなどは含まれていません。

3.微小ビーム測定光学系セット

30 μm以下のサイズのビームを測定するためには、微小ビームを測定できる微小ビーム測定光学系セットが必要となります。微小ビーム測定光学系セットとして他にはない””高倍率、高NA、極低収差””を実現しました。

03683301

図 微小ビーム測定光学系 外観図

  • 倍率:約30倍(典型値 30.8倍 @1064 nm、31.5倍 @532 nm)
  • NA:0.4
  • 使用波長範囲:400~1100 nm(推奨 600~1100 nm)
  • 光学分解能: < 2 μm
  • 作動距離:約1.7 mm(典型値 1.7 mm @1064 nm、1.6 mm @532 nm)
  • 長さ:176 mm
  • CCDカメラに接続可能

価格:¥81,000(税抜き)(カメラは含まれていません)
納期:約2週間

4.微小ビーム測定光学系セット+専用ホルダ+3軸ステージ

数マイクロメートルサイズのビームを測定するためには、マイクロメートルレベ ルで位置を調整できる3軸(x,y,z)ステージが必要となります。
expandsys

図 微小ビーム測定光学系セット及び専用ホルダと3軸ステージ仕様

  • マイクロ操作位置:サイド
  • 移動ガイド:ボールガイド
  • 移動量/1回転:0.5mm
  • マイクロメータ最小読取:0.01mm
  • 移動量〔mm〕:XY軸±6.5、Z軸±5
  • M6タップを施した台への取り付けが可能

価格:¥201,000(税抜き)(カメラは含まれていません)
納期:約2週間

用語解説

カバーガラスとは

CCDセンサの上には保護用のカバーガラスが付けられています。CWレーザー、ナノ秒レーザーはコヒーレンス長が長いため、CCD受光面の反射とカバーガラスの反射が干渉して干渉縞が出ることがあります。これは平行ビームでは顕著ですが、遠視野像の測定時などの集光ビームでは干渉縞が現れにくくなります。
一方で、ピコ秒レーザー、フェムト秒レーザーの場合はカバーガラスあり・なし、どちらのカメラもお勧めすることができます。目安として、CCD素子とカバーガラスの間の距離(1~2mm程度)よりもコヒーレンス長が短ければ干渉が起きません。例えば、フーリエ変換限界が1ps以下のパルスでは、干渉縞はまず起こりません。infuluence_of_coverglass_s図 カバーガラスの有無によってビームプロファイルが崩れる様子M2とはレーザービームの集光特性を示しており、M2=1が理想的な状態です。
レーザービームをレンズで集光させて加工等に利用する場合、同じ性能(例えば1W, 1mJ)のレーザーであっても射出ビームの品質次第で集光特性が変わり、結果的に加工特性が変わってしまいます。
加工特性を予期するためにも、ビーム品質を測定する必要があります。

CCDとは

CCD(Charged Coupled Device)とは電荷結合素子のことで、半導体で構成される受光部と転送部を配列させた構造をしています。受光部に光が照射されると電荷が発生し、発生した電荷を転送する機能を持っています。CCDのどの位置にある半導体が光を受けたかを判断することで、撮影対象の像(ここでは、レーザー)を得ることが出来ます。解像度とは画像のきめ細かさや、滑らかさを表す尺度であり、この値が高いほど、より自然に近い画質が得られます。上記の表で示している解像度とは、CCD内の受光部の数を意味しています。解像度が高いということは受光部の数が多いことを意味していて、例えば1628×1236の解像度の場合、約200万個の受光部が配列されていることを示しています。resolution図 解像度の違い
引用:Wikipedia

フレームレートとは

動画は静止画像をつなぎ合わせることで作られます。静止画像を1秒間に何枚つなぎ合わせているかを示すのがフレームレート(fps)です。フレームレートが高いほど動きが滑らかな動画になります。
フレームレートには60 fps、50 fps、30 fps、25 fps、24 fps などがあり、 60 fps は1 秒間に60コマ(60フレーム)で記録されることを表します。fps図 フレームレートによる滑らかさの違い
引用:Nikon

(CCD)センサーサイズとは

CCDセンサーの大きさを示しています。CCDが大きいほど一つの受光素子の大きさが大きくなるため、多くの光を取り込むことが出来ます。つまり、同じ解像度(画素数)の場合、センサーサイズが大きい方が画質が良くなります。

ビット数とは

ビット数とは、黒から白への階調をどれだけ細かいステップで分けるかを意味しています。8ビットは2の8乗を意味しているので、256段階のステップ、12ビットだと4096段階のステップで分けていることになります。ビット数が大きいほど階調が綺麗に表現されます。

トリガーとは

トリガーとは、入力信号をスイッチとして撮影を開始する機能のことを言います。レーザー照射と同時にトリガーとしてCCDカメラに電圧を印加することで、レーザー照射と同期して観察することができます。パルス波の場合は、パルスに合わせて手動で撮影のon/offを行うことが困難であるため、一般的にはトリガーを用いて観察を行います。

FAQ

どのカメラに対応していますか?

The Imaging Source社、iDS社、Basler社のモノクロカメラ、アートレイの424KY、445KY、150P5シリーズに対応しています。その他のカメラでも使用可能な場合がありますのでお問い合わせください。なお、Thorlabs社のカメラの一部はiDS社製カメラのOEMであるため、Thorlabs社のドライバー削除後iDS社のドライバーをインストールすることで使用できる可能性があります。

どのカメラを使用すればいいですか?

波長、平行光か集光光か、CWかPulseか、Pulseの場合はパルス幅などによって異なります。使用するカメラでお悩みの際は、LaseViewカメラセットシリーズをご覧ください。

レーザーの減衰が必要ですか?

カメラに入射するレーザーの強度・エネルギーの目安は下記です。
・強度1-10 uW/cm2以下
・パルスエネルギー10 nJ以下
これ以上の強度・エネルギーのレーザーの場合はNDフィルターなどを使用して減衰が必要です。なお、100 mW以上の場合はNDフィルターでは熱レンズ効果が発生してしまうため、ビームスプリッターも組み合わせた減衰が必要です。

減衰光学系を使用することなく、レーザーを入射するだけで測定ができるビームプロファイラをお求めの方は、大口径・高出力対応ビームプロファイラ(LaseView-LHB)をご利用ください。

パワーメーターとしても使用できますか?

ビーム全体を積分した相対的なトータルパワーを表示する機能がありますが、絶対値校正がされておらず、CCDの感度と暗電流量は温度に依存するため絶対的なパワーを測定することは出来ません。
CCDの温度依存性については、下記資料の12ページをご参照ください。
https://www.hamamatsu.com/resources/pdf/ssd/fft_ccd_techinfo.pdf
なお、冷却CCD(温度制御付き)を使用することで、温度依存性を除去することは可能です。ただし、CCDのダイナミックレンジは3桁程度ですので、パワー測定でもダイナミックレンジは1000カウント程度が上限値となります。

CMOSカメラはCCDカメラに劣りますか?

CMOSセンサーはCCDセンサーに比較して、
・固定パターンノイズが大きい
・感度の均一性、リニアリティが劣る
と従来は言われていましたが、最新のCMOSセンサーではこれが解決され、CCDセンサーと遜色ない特性が得られるようになっています。
逆に、CMOSセンサーがCCDセンサーに勝る点として、
・読み出し速度(フレームレート)が高い
・消費電力が少ない
・基板面積が小さくて済む
・安価
などがあります。
高精度測定が必要な場合はCCDカメラをお勧め致しますが、CMOSカメラで十分測定できる場合もあります。CMOSカメラとCCDカメラでお悩みの際はお問い合わせ下さい。

カラーとモノクロの違いはありますか?

一般的に、カラーカメラを定量的なビーム測定に使用することはお勧めできません。カラーセンサーを利用した場合、以下のような不利な点があります。
1. 感度が低い。IRカットフィルタ内蔵のため、特に赤外線域では1/100以下になることもあります。
2. 情報量が少なくなるため、ビーム径が小さい場合は測定精度が低下する恐れがあります。
3. LaseViewでは、RGBの3色の信号の平均値からモノクロ画像を作り、その画像を表示・解析するため、ダイナミックレンジが狭くなります。
4. 信号の飽和がわかりにくく、リニアリティが著しく低下することがあります。

LaseView購入後にアップデートは出来ますか?

ご購入後、1年間は無料でアップデートをご利用頂けます。

〜の機能を追加できますか?

ご要望に応じてカスタムが可能です。対応可能内容・費用についてはお問い合わせ下さい。

LaseView 3の(以前のバージョン)との違いはありますか?

下記の機能が追加されています。
①M2解析機能
②重心計算に基づく自動ピーク追従機能
③ユーザビリティの向上
④対応カメラの増加(Imaging Source社、iDS社、Basler社、アートレイ)
⑤安定性の向上
⑥並列演算による処理速度の向上
⑦日本語対応

二画面同時に起動できますか?

LaseViewとしての制限はありません。ただし、ハードウェアの制限により、2台のカメラが競合して動作しないこともあります。USBコントローラーを複数搭載したPCですと、競合の問題が起こりにくくなります。

バックグランドを引くことができますか?

ダーク補正機能により、バックグランドを引くことができます。

カメラの画素を全て利用できますか?

カメラの仕様によります。ソフト側は任意の解像度に対応しています。

ビームの位置ずれを見るために過去のビームの縁を記録できますか?

ラインプロファイル解析やピーク積分解析にて、「位置を固定」をONにすると、ソフトを閉じても十字線の位置が保持されます。

レーザーの重心を測定できますか?

次期バージョンで重心解析機能を追加予定です。

パワーの積分値測定ができますか?

ピーク積分機能で積分値を測定することができます。

プロット位置を1ピクセル毎に動かすことができますか?

マウス操作により可能です。

座標を指定することができますか?

マウス操作により指定した位置の座標が表示されるため、座標を見ながらご希望の座標に合わせることができます。

解析結果をエクスポートはできますか?

メニューのファイル→オプション→グラフデータの保存からエクスポートできます。

画像のエクスポートはできますか?

スクリーンショットの保存の他、解析結果を含めたエクスポートが可能です。

蛍光観察に使用できますか?

蛍光材料の蛍光観察に使用できます。ただし、蛍光が極めて弱い材料の場合はカメラの感度が足りず測定できない場合があります。

ガンマ値は補正されていますか?

カメラによってはガンマ値が調整できるものがありますが、基本的にはデフォルトのガンマ値は1.0となっており、リニアリティが確保されています。
また、弊社の推薦カメラではCCDの蓄積電子をリニアな増幅器で増幅しているため、ガンマ値補正なしで良好なリニアリティが得られます。
より精密なリニアリティ補正が必要な場合はご相談ください。

ビーム径の測定精度はどのぐらいになりますか?精度が保証されるビーム径の範囲はどのぐらいになりますか?

LaseViewでは、ガウスフィッテングに基づくビーム径解析を行うことが出来ます。ノイズが少なく、適切な条件で測定を行った際の、ガウスフィッテングの典型的な標準誤差は1%以下です。ただし、測定条件(ノイズの大きさ、ビーム径、ビーム形状)により誤差は大きく異なってきます。ガウス形状のプロファイルであれば、ビームの半値全幅の範囲が、センサのピクセルサイズのおよそ30倍以上、センサの受光面サイズのおよそ4分の1以下であれば、高い精度を得ることができます

LaseView LHBに関して、測定面積を増やした場合のデメリットを教えてください

受光面サイズに比例して光学分解能が下記のように悪くなってしまいます。

受光面横幅   光学分解能の目安
10~20mm   約25μm
20~40mm   約50μm
40~80mm   約100μm(標準)
80mm以上   約200μm

D4σの使い方を教えてください

閾値は0~100%で、積分を行う範囲(輝度値の範囲)が変わりまして、0%はバックグラウンド、100%はビーム頂上部を示します。通常は閾値OFFで問題ありません。

D4σのビーム径は見た目のビーム径と異なりますが如何でしょうか?

D4σ標準偏差の4倍をビーム径としているため、裾野成分が多いビームでは見た目よりビーム径が大きくなります。

D4σ測定でベースライン減算(バックグラウンド減算)は必要でしょうか?

通常は、D4σ測定のためにバックグラウンド減算機能を使う必要はありません。D4σ算出の際、ソフトウェアが自動でバックグラウンドレベルを計算し、差し引く処理を行っています。

CCDカメラに光が全く入らない状態で、バックグラウンドレベルがフラットでない場合、精度向上のためにバックグラウンド減算機能が有効です。バックグラウンド減算をONにし、CCDカメラに光が全く入らない状態で「セット」をクリックすると、その時点での画像がバックグラウンドレベルとして内部に記憶され、次の画像からバックグラウンド減算処理を行います。

ノイズが大きい場合は、「セット」をクリックする際に「平均化」を有効にすると良い結果が得られます。

D4σは重心を中心に±2σ部分を径とするということでしょうか?

重心を平均値として水平・垂直方向の標準偏差σを計算し、4σをビーム径とします。

D4σでの測定の際,ビームサイズによって範囲が自動的に変化しますがどのような計算で変化するのでしょうか?

ビーム径から、積分範囲を自動で設定しています。具体的には、ピーク輝度の50%以上の輝度のピクセルの重心と標準偏差σを計算し、σに適当な係数を乗じた数値を幅としています。「範囲を指定」をONにすると、積分範囲を手動で設定できます。
積分範囲が小さすぎるとビーム径が小さく評価され、大きすぎるとバックグラウンドによる誤差が大きくなりますので、適切な積分範囲を設定することが重要です。また、SN比の低い画像では精度が低くなります。

D4σは、あらゆる強度分布のビームでビーム幅を定義できることが利点ですが、積分演算を行うため、測定条件によって測定誤差が大きくなることが難点です。

 

LaseViewの販売実績

  • 大阪大学
  • 核融合科学研究所
  • 九州大学
  • 京都大学
  • 電気通信大学
  • 東京大学
  • 東京工業大学
  • 日本原子力研究開発機構
  • 光産業創生大学院大学
  • 広島大学
  • 福井大学
  • 山形大学
  • 理化学研究所
  • レーザー技術総合研究所
  • 海上保安本部
  • Helmholtz-Zentrum Dresden-Rossendorf (HZDR, ドイツ)
  • Institute of Physics AS CR, v.v.i. (チェコ共和国)
  • University of Southampton(英国)
  • 虹光精密工業股份有限公司(台湾)
  • Jet Propulsion Laboratory, NASA
  • Continuum Inc.
  • 国立天文台(NAOJ)
  • その他、国内外の民間企業
    laseview_inquiry

 

ユーザー様のご感想

  • カメラが安価なため壊しても平気
  • カメラを使い捨て気分で使用できる
  • 準備が簡単
  • ソフトが直感的に使いやすい
  • 安い!
  • M2 ビーム品質測定機能が標準装備されているのは大変嬉しい

LaseViewの価格

製品名、型番 価格(税抜) 納期 カタログ 取扱説明書
製品版 ビームプロファイラ with M2 プラットフォームソフト
型番:LaseView 6
¥250,000 即日 pdf pdf
評価版
(7日間)
ビームプロファイラ with M2 プラットフォームソフト(評価版)
型番:LaseView 6 evaluation
¥0 即日 上記 上記

最新バージョンは、6.0.4.0です。

*LaseView 5をご購入された方は無料でバージョンアップができますのでご連絡ください。

 

参考となるサイト

ビームプロファイラ・M2ビーム品質測定器の原理
大口径・高出力対応ビームプロファイラ
FIBER LASER.JP上のビームプロファイラ製品
Measuring Instrument Selection上のビームプロファイラ製品 (English)
Beam profiler with M2 platform software LaseView 6 (English)
Beam profiler for large diameter and high output (English)