

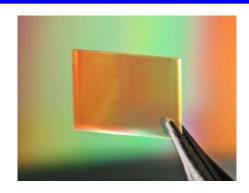
Specification for High Efficiency Telecom Transmission Grating, T-966C series

Crafting light for the Information Age

LightSmyth Technologies' transmission gratings are fabricated on fused silica substrates and robust dielectric films by state-of-the-art projection photolithography and reactive ion etch. These high fidelity semiconductor fabrication methods enable precise realization of sophisticated proprietary grating designs that provide diffraction efficiency close to 100% and line spacing control to 1 part per million.

No other grating technology is capable of achieving this degree of performance combined with the cost effectiveness and reproducibility afforded by semiconductor volume fabrication technology.

Left: Typical absolute diffraction efficiency of 966 grooves/mm Telecom Transmission Grating for C-band.


Features:

- Ultra-High Diffraction Efficiency.
- Very Low Polarization Sensitivity.
- Excellent Feature Fidelity and Groove Uniformity.
- Only fused Silica and robust dielectrics are used, no polymers.
- Extreme environmental stability. Telcordia qualified.
- Each grating is a master: low light scatter, no ghosting.
- Very competitive pricing.
- Strict quality control. LightSmyth is ISO 9001:2008 certified.

Applications

- Optical telecommunications (ROADM, WSS, WDM MUX/DEMUX)
- Pulse compression
- Spectral beam combining
- Remote optical sensors and spectroscopy

LightSmyth Technologies

875 Wilson Street, Unit C, Eugene, 97478 OR USA Tel + 1-541-431-0026 www.LightSmvth.com

住所:京都市下京区鳥丸通四条下ル水銀屋町637番地第5長谷ビル2階 HP: http://www.symphotony.com Email:info@symphotony.com

株式会社光響 TEL: 070-6582-2430

FAX: 075-320-1604

Specification for High Efficiency Telecom Transmission Grating, T-966C series

Crafting light for the Information Age

Optical						
Description	Value		Units			
	T-966C-[size]-94	T-966C-[size]-92	Offics			
Line Density	966.2		Lines/mm			
Line Density Uniformity	± 0.001		Lines/mm			
Angle of Incidence (AOI) ¹	48.3	٥				
Wavelength Range	1526 to 1566		nm			
Optimal polarization ²	Any					
Diffraction Efficiency 3, 4	≥ 94	≥ 92	%			
Polarization Dependent Loss ^{3, 4}	≤ 0.20	≤ 0.25	dB			
Spectral Non-Uniformity ^{3, 4}	≤ 0.25		dB			
Spatial PDL Non-Uniformity ^{3, 4}	≤ 0.1		dB			
Insertion Loss Ripple 4, 5	≤ 0.1	≤ 0.15	dB			

¹ Optical grating performance will remain substantially similar over a 5 ° variation in angle of incidence.

⁵ Determined by Fast Fourier Transform method.

Mechanical				
Dimension tolerances	±0.2 for grating size and width			
Substrate Thickness	0.675 ± 0.050 mm			
Material	Fused silica, dielectric layers			
Scratch/Dig ⁶	60/40 standard, 40/20 and 20/10 custom			

⁶ as per MIL-PRF-1380B in the clear aperture; no requirements outside of the clear aperture.

Substrate dimension options						
				Tr.		
Part number	Substrate width,	Substrate height,		Clear aperture		
	mm ′	mm ′	width, mm ⁸	height, mm ⁸		
T-966C-1610-94	16.0	10.0	15.0	9.0		
T-966C-2710-94	27.0	10.0	26.0	9.0		
T-966C-2710-92	27.0	10.0	26.0	9.0		
Custom dimensions	Any rectangle fitt	ing within 135 mm	diameter circle	(e.g. 130 x 20 mm)		

⁷ Width is perpendicular to grating grooves, height is along the grating grooves.

LightSmyth Technologies

875 Wilson Street, Unit C, Eugene, 97478 OR USA Tel + 1-541-431-0026 www.LightSmyth.com

² p-polarization: electric field vector is perpendicular to the grating lines; s-polarization is orthogonal to p.

³ Determined from parabolic fit of efficiency as a function of wavelength for s- and p- polarization,

⁴ Worst case in the operational wavelength range.

⁸ Clear aperture is centered on the substrate.