
Preliminary Datasheet

Active Components Pump Laser Modules

Key Features

Up to 950 mW operating power

Operating temperature up to 75 °C

Fiber Bragg Grating (FBG) on PMF

Telcordia GR-468-CORE qualified

RoHS compliant

Applications

High output power low noise Erbium-Doped Fiber Amplifier

Multi-pumping architectures

Sensors

CATV

Fiber Lasers

For more Info

Please contact us at: Europe & Asia: +33 169 805 833 North America: +1 514 748 4848 +1 888 922 1044

sales@3spgroup.com

2000CHP

1050 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

The 2000CHP is a new generation of 980 nm terrestrial pump modules powered by in-house chip technology fully qualified for submarine applications, ensuring an outstanding level of performance, power consumption and reliability.

Low Profile, 14-pin butterfly modules are available with an operating power up to 950 mW.

They incorporate a thermoelectric cooler (TEC), a precision NTC thermistor and a back-facet monitoring photodiode.

The wavelength is "locked" utilizing a fiber bragg grating (FBG) located in a single mode Polarization Maintaining Fiber (PMF) pigtail.

The module meets the Telcordia[™] GR-468-Core requirements for hermetic 980 nm pump modules.

Kokyo

住所:京都市下京区鳥丸通四条下ル水銀屋町637番地第5長谷ビル2階

HP: http://www.symphotony.com Email

n Email: info@symphotony.c

株式会社光響 TEL: 070-6582-2430 FAX: 075-320-1604

1050 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

ELECTRO-OPTICAL CHARACTERISTICS

The following parameters are specified BOL for a $T_{case} = -5$ °C to 75 °C, $V_{BFM} = -5$ V and -50 dB max back-reflection unless otherwise stated.

Parameters	Conditions	Symbol	Min	Тур	Max	Unit
PUMP LASER						
Threshold current (1)		I _{th}	-	80	100	mA
Nominal operating power		P _{nom}	850	-	-	mW
Kink free power (2)		P _{kink}	1.1 x P _{nom}	-	-	mW
	P _{nom} = 800 mW		-	-	1450	mA
Forward aurrent (3)	P _{nom} = 850 mW		-	-	1500	
Forward current (3)	P _{nom} = 900 mW	I _{nom}	-	-	1650	
	P _{nom} = 950 mW		-	-	1650	
Forward voltage	@ 950 mW	V _{nom}	-	-	2.4	V
Peak wavelength tolerance	@ T _{case} = T _{FBG} = 25 °C 0.1x P _{nom} to P _{nom}	$\Delta \lambda_{p}$	-	-	±1	nm
Wavelength tuning vs temperature $(T_{grating} = -5 \text{ to } 75 \text{ °C})$	0.1x P _{nom} to P _{nom}	$\Delta\lambda_{p}$ / ΔT	-	-	0.02	nm / °C
Spectral width @ -3 dB	0.1x P _{nom} to P _{nom}	$\Delta\lambda_{\sf FWHM}$	-	-	1.0	nm
Power in band (4)	P _{nom}	P _{band}	90	-	-	%
Optical power stability	Peak to peak, 10 Hz-50 kHz, 60 sec, Pnom	ΔΡ	-	-	2	%
MONITOR DIODE						
Responsivity		I _{BFM} / P	0.5	-	10	μA / mW
Dark current	$V_r = 5 V$	I _{BFM_dark}	-	-	100	nA
THERMO-ELECTRICAL COOLER						
Cooling capacity		ΔT_TEC	50	-	-	°C
TEC voltage (EOL)	T _{case} = 75 °C, 1.1 x I _{nom} @950mW	V _{TEC} , EOL	-	-	4.0	V
TEC current (EOL)	T _{case} = 75 °C, 1.1 x I _{nom} @950mW	I _{TEC} , EOL	-	-	3.0	А
THERMISTOR						
Resistance	25 °C	R _{th}	9.5	10	10.5	kΩ
Constant		В	3600	-	4200	K

⁽¹⁾ I_{th} is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 mW and 50 mW

⁽²⁾ A kink is detected when the local slope dP/dI is below S_{min} or above S_{max}. S_{min} is defined as 0.5xS_{avg} and S_{max} is defined as 1.5xS_{avg}

⁽³⁾ EOL forward current I(EOL)= 1.1x I(BOL)

⁽⁴⁾ P_{band} is defined as the power within the band $\lambda p \pm 1.5$ nm vs the total output power

1050 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

ABSOLUTE MAXIMUM RATINGS

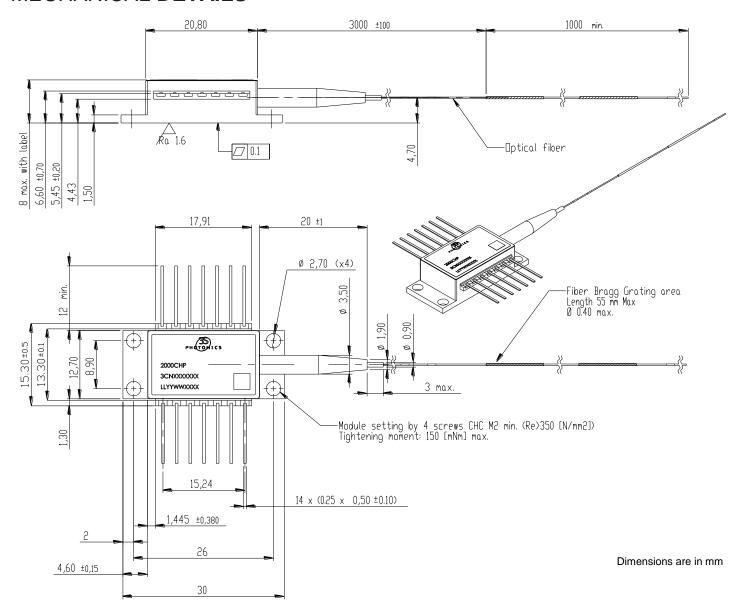
Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

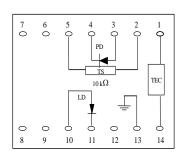
Parameter Conditions	Symbol	Min	Max	Unit
Storage temperature (2000 h)	T _{stg}	-40	85	°C
Operating temperature (T _{submount} = 25 °C)	T _{op}	-5	75	°C
Lead soldering temperature (10 s maximum)		-	280	°C
LD forward drive current (10 s maximum)	I _{f_max}	-	1700	mA
LD reverse voltage	V_{r_max}	-	2.5	V
PD reverse voltage	V_{PD_max}	-	15	V
PD forward current	I _{PD_max}	-	10	mA
TEC voltage	V _{TEC_C_max}	-	4.2	V
TEC current	I _{TEC_C_max}	-	3.2	А
ESD* damage	V _{ESD}	-	1000	V
Mounting torque		-	150	mN.m
Fiber bend radius		20	-	mm
Axial pull force (1x1min)		-	5	N

^{*} Human Body model, C = 100 pF, R = 1.5 k Ω

FIBER PIGTAIL CHARACTERISTICS

Parameter	Note	Min	Тур	Max	Unit
Fiber type		SM98-PS-U25A-H or equivalent			
Coating diameter	(except along grating)	230	250	270	μm
FBG recoat diameter		-	-	400	μm
FBG position	Module to center of FBG	-	3	-	m
Loose tube buffer diameter		885	-	915	μm
Fiber proof test level		200	-	-	kpsi
Grating proof test level		150	-	-	kpsi
Pigtail termination	Bare fiber				
Polarization State	Aligned parallel to the slow axis				


1050 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module



MECHANICAL DETAILS

PIN **ASSIGNEMENT**

N°	Description	N°	Description
1	TEC (+)	8	No connect
2	Thermistor	9	No connect
3	Monitor PD Anode	10	Laser Anode (+)
4	Monitor PD Cathode	11	Laser Cathode (-)
5	Thermistor	12	No connect
6	No connect	13	Ground
7	No connect	14	TEC (-)

Totally floating pin-out

1050 mW Kink-Free, FBG Stabilized, 980 nm Cooled Pump Laser Module

LASER SAFETY INFORMATION

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation. This product is classified Class 4 Laser Product according to IEC-60825-1.

HANDLING

This product is sensitive to electrostatic discharge and should not be handled except at a static free workstation. Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the pump laser module. Caution! Handle the module by its package only; never hold it by its pigtail. Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.

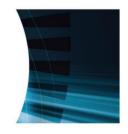
APPLICATION NOTE

In order to prevent any mishandling, misuse, neglect or accident, it is highly recommended to read and follow the instructions detailed in the application note:

RCL IMA APN 000 00007 "Handling, Mounting, Testing and Operating Cooled 14-pin Butterfly Laser Pumps"

ORDERING INFORMATION

2000CHP PUMP PRODUCT FAMILY


PMF Pigtail	λ _p = 974.0 nm, T= 25 °C	λ _p = 976.0 nm, T= 25 °C	λ _p = 979.5 nm, T= 25 °C	
Nominal Power	Part Number	Part Number	Part Number	
800 mW	3CN01466HA	3CN01378HA	3CN01376HA	
850 mW	3CN01466HL	3CN01378HL	3CN01376HL	
900 mW	3CN01466JA	3CN01378JA	3CN01376JA	
950 mW	3CN01466JL	3CN01378JL	3CN01376JL	

3SPGroup can also develop custom products to meet a wide range of technical requirements. Please contact your Sales Manager for details.

1050 mW Kink-Free, FBG Stabilized. 980 nm Cooled **Pump Laser Module**

CONTACT INFORMATION

+33 169 805 833 Europe & Asia: North America: +1 514 748 4848 +1 888 922 1044

sales@3spgroup.com www.3spgroup.com

IMPORTANT **NOTICE**

Information in this document is typical and must be specifically confirmed in writing by your supplier before it becomes applicable to any order or contract.

Information is subject to change without notice.

NOTES

Kokyo 住所:京都市下京区鳥丸通四条下ル水銀屋町637番地第3長谷ビル2階

株式会社光響 TEL: 070-6582-2430

FAX: 075-320-1604