3SPTechnologiesSource of Smart Solutions

Active Components Pump Laser Modules

Datasheet

Key Features

Up to 680mW Pop

Low Power Consumption

Extended operating temperature range (-5 °C to +75 °C)

Fiber Bragg Grating (FBG) on SMF

High wavelength and power stability Telcordia GR-468-CORE qualified

RoHS compliant

Applications

High output power low noise EDFAs

Dense wavelength division multiplexing EDFAs

CATV

1999CHB

980 nm Cooled Pump Laser Module 750mW Kink-free

The 1999CHB is a new generation of 980 nm terrestrial pump modules powered by an in-house chip technology fully qualified, ensuring an outstanding level of performance and reliability.

Low Profile, 14-pin butterfly modules are available with an operating power up to 680 mW.

They incorporate a thermoelectric cooler (TEC), a precision NTC thermistor and a back-facet monitoring photodiode.

The 1999CHB family has been designed to ensure high wavelength and power stability performance at low power with a 16.5dB dynamic range.

The module meets the Telcordia[™] GR-468-Core requirements for hermetic 980 nm pump modules.

For more Info

Please contact us at: Europe & Asia: +33 169 805 750 North America: +1 514 748 4848, Ext 4374 customerservice@3spgroup.com www.3sptechnologies.com

株式会社 光響

Email: info@symphotony.com Web: https://www.symphotony.com/

750mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module

ELECTRO-OPTICAL CHARACTERISTICS

The following parameters are specified BOL for a $T_{submount}$ = 25 °C, T_{case} = -5 °C to 75 °C, V_{BFM} = -5 V and -50 dB max back-reflection unless otherwise stated.

Parameters	Conditions	Symbol	Min	Тур	Max	Unit
PUMP LASER		-				
Threshold current (1)		Ith	-		70	mA
Nominal operating power		Pnom	450	-	680	mW
Kink free power (2)		P _{kink}	1.1 x P _{nom}	-	-	mW
Forward current (3)	P_{nom} = 450 mW P_{nom} = 480 mW P_{nom} = 500 mW P_{nom} = 540 mW P_{nom} = 550 mW P_{nom} = 600 mW P_{nom} = 680 mW	Inom	- - - - - -	- - - - - -	860 900 935 975 1000 1050 1150	mA
Forward voltage	@ 680 mW	V _{nom}	-		1.9	V
Peak wavelength tolerance	@ T _{case} = T _{FBG} = 25 °C Power Range	$\Delta\lambda_{p}$	-	-	±1	nm
Wavelength tuning vs temperature (T _{FBG} = -5 to 75 °C)	Power Range	Δλρ / ΔΤ	-	-	0.02	nm / °C
Spectral width @ -3 dB	Power Range	Δλεωμμ	-	-	1.0	nm
Power range			15		P _{nom}	mW
Power in band (4)	P _{nom}	P _{band}	90	-	-	%
Optical power stability	Peak to peak, 1 Hz-50 kHz, 60 sec, 15mW≤P<20mW 20mW≤P≤P _{nom}	ΔΡ	-		0.2 0.1	dB
Power consumption, EOL	$P_{nom} = 680 \text{ mW}$		-	-	7.0	W
MONITOR DIODE						
Responsivity		I _{BFM} / P	0.5	-	10	μA / mW
Dark current	V _r = 5 V	IBFM_dark	-	-	100	nA
THERMO-ELECTRICAL COOLER						
TEC voltage (EOL)	T _{case} = 75 °C,	VTEC, EOL	-	-	3.2	V
TEC current (EOL)	1.1 P _{nom} =680mW	I _{TEC} , EOL	-	-	1.4	Α
TEC Power consumption	I. I I nom —OOOIIIVV	PTEC, EOL	-	-	4. 5	W
THERMISTOR						
Resistance	25 °C	R _{th}	9.5	-	10.5	kΩ
Constant		β	3600	-	4200	K

⁽¹⁾ I_{th} is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 mW and 50 mW

3SP Technologies Datasheet www.3sptechnologies.com

⁽²⁾ A kink is detected when the local slope dP/dI is below S_{min} or above S_{max}. S_{min} is defined as 0.5xS_{avg} and S_{max} is defined as 1.5xS_{avg}

⁽³⁾ EOL forward current I(EOL)= 1.1x I(BOL)

⁽⁴⁾ P_{band} is defined as the power within the band $\lambda p \pm 1.5$ nm vs the total output power

750mW Kink-free, FBG Stabilized, 980 nm Cooled **Pump Laser Module**

ABSOLUTE MAXIMUM RATINGS

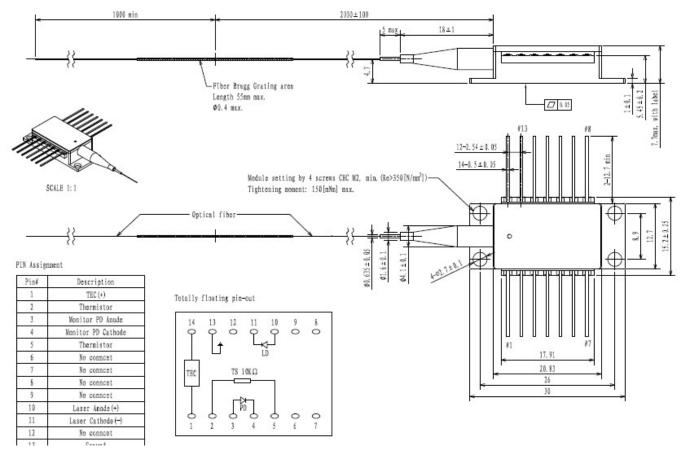
Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

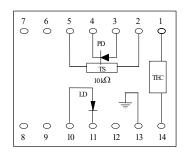
Parameter Conditions	Symbol	Min	Max	Unit
Storage temperature (2000 h)	T _{stg}	-40	85	°C
Operating temperature (T _{submount} = 25 °C)*	Top	-20	75	°C
Lead soldering temperature (10 s maximum)		-	280	°C
Storage Relative Humidity (Non Condensing)		5	95	%
Operating Relative humidity		5	85	%
LD forward drive current (10 s maximum)	I _{f_max}	-	1300	mA
LD reverse voltage	V_{r_max}	-	2.0	V
PD reverse voltage	V _{PD_max}	-	15	V
PD forward current	I _{PD_max}	-	10	mA
TEC voltage	V _{TEC_C_max}	-	4.2	V
TEC current	I _{TEC_C_max}	-	2.0	Α
ESD** LD damage	V _{ESD-LD}	-	1000	V
ESD** MPD damage	V _{ESD-MPD}		500	V
Mounting torque		-	150	mN.m
Fiber bend radius		16	-	mm
Axial pull force (1x1 min)		-	5	N

FIBER PIGTAIL CHARACTERISTICS

Parameter	Note	Min	Тур	Max	Unit
Fiber type		HI1060™ or equivalent			
Coating diameter	(except along grating)	230	250	270	μm
FBG recoat diameter		-	-	400	μm
FBG position	Module to center of FBG	-	2	-	m
Fiber proof test level		200	-	-	kpsi
Grating proof test level		150	-	-	kpsi
Pigtail termination	Bare fiber				

 $^{^*}$ No cold start. TEC will be turned on first. ** Human Body model, C = 100 pF, R = 1.5 k $\!\Omega$


750mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module


MECHANICAL DETAILS

Dimensions are in mm

PIN **ASSIGNEMENT**

N°	Description	N°	Description
1	TEC (+)	8	No connect
2	Thermistor	9	No connect
3	Monitor PD Anode	10	Laser Anode (+)
4	Monitor PD Cathode	11	Laser Cathode (-)
5	Thermistor	12	No connect
6	No connect	13	Ground
7	No connect	14	TEC (-)

Totally floating pin-out

750mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module

LASER SAFETY INFORMATION

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation. This product is classified Class 4 Laser Product according to IEC-60825-1.

HANDLING

This product is sensitive to electrostatic discharge and should not be handled except at a static free workstation. Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the pump laser module. Caution! Handle the module by its package only; never hold it by its pigtail. Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.

APPLICATION NOTE

In order to prevent any mishandling, misuse, neglect or accident, it is highly recommended to read and follow the instructions detailed in the application note:

http://www.3sptechnologies.com/data/File/3SP AN AC Cooled-BTF-Pumps R1407 RCLIMAAPN00000007 01.pdf

ORDERING INFORMATION

1999CHB PUMP PRODUCT FAMILY

SMF Pigtail	λ _p = 974.0 nm, T= 25 °C	λ _p = 976.0 nm T= 25 °C
Nominal Power	Part Number	Part Number
450mW	3CN01732DL	3CN01733DL
480mW	3CN01732DS	3CN01733DS
500mW	3CN01732EA	3CN01733EA
540mW	3CN01732EJ	3CN01733EJ
550mW	3CN01732EL	3CN01733EL
600 mW	3CN01732FA	3CN01733FA
680 mW	3CN01732FS	3CN01733FS

750mW Kink-free, FBG Stabilized, 980 nm Cooled Pump Laser Module

CONTACT INFORMATION

Please contact us at:

Europe & Asia: +33 169 805 750

North America: +1 514 748 4848, Ext 4374

customerservice@3spgroup.com www.3sptechnologies.com

IMPORTANT NOTICE

Information in this document is typical and must be specifically confirmed in writing by your supplier before it becomes applicable to any order or contract.

Information is subject to change without notice.

©2019 3SP Technologies S.A.S.

