1x16／16x1 Optical Switch

Product Description

Lightwave Link Inc． $1 \times 16 / 16 \times 1$ Fiber Optical Switches optimized for a wide range of fiber－optic applications．Design is based on worldwide telecommunications，data communication，system monitoring and component testing requirements．This 1×16／ 16X1 OSW Module has 1 Input Port， 16 Output Ports or 16 Input Ports， 1 Output port． The Module is controlled by a set of electrical connections．Electrical feedback will be provided by the Module indicating which state the optical switch is in．Lightwave Link Inc． 1×16／ 16×1 OSW Module fully complies with RoHS Directive 2002／95／EC （2008／385／EC）．

Features

－Compact Size
－Low Insertion－Loss
－Fast Switching Speed
－Built－In position monitoring
－Latching Type available
－RoHS Compliance

Applications

－Optical network monitoring
－Optical measurement systems

Performance Specification

1．Special wavelength would be upon request．
2．Optical parameters excluded connectors．
3．A minimum $\geqq 20 \mathrm{~ms}$ pulse is recommended for latching type of switch．
4．The product weight excluded optical connectors．

Physical Dimension

Pin Description

Pin Number	Name	Function	
1	Input or Output		
2	S1	Input	Port Selection Pin1 (TTL signals)
3	S2	Port Selection Pin2 (TTL signals)	
4	S3	Input	Port Selection Pin3 (TTL signals)
5	NC	Input	Nort Selection Pin4 (TTL signals)
6	M0	N/A	Monitor the Selected Pin1
7	M1	Output	Monitor the Selected Pin2
8	M2	Output	Monitor the Selected Pin3
9	NC	Output	Monitor the Selected Pin4
10	Vcc	N/A	No Connect
11	GND	Input	+5.0 V Power Supply (TTL Power)
12	Input	Power Ground	
13	Vbb	Input	+5.0 V Power Supply (OSW Power)
14	GND	Input	+5.0 V Power Supply (OSW Power)
15		Input	Power Ground
16		Power Ground	

Operation of the Optical Switch

Input Signals				The Selected Path	Monitor Signals			
S3	S2	S1	SO		M3	M2	M1	M0
0	0	0	0	Input / Output Fiber 1	0	0	0	0
0	0	0	1	Input / Output Fiber 2	0	0	0	1
0	0	1	0	Input / Output Fiber 3	0	0	1	0
0	0	1	1	Input / Output Fiber 4	0	0	1	1
0	1	0	0	Input / Output Fiber 5	0	1	0	0
0	1	0	1	Input / Output Fiber 6	0	1	0	1
0	1	1	0	Input / Output Fiber 7	0	1	1	0
0	1	1	1	Input / Output Fiber 8	0	1	1	1
1	0	0	0	Input / Output Fiber 9	1	0	0	0
1	0	0	1	Input / Output Fiber 10	1	0	0	1
1	0	1	0	Input / Output Fiber 11	1	0	1	0
1	0	1	1	Input / Output Fiber 12	1	0	1	1
1	1	0	0	Input / Output Fiber 13	1	1	0	0
1	1	0	1	Input / Output Fiber 14	1	1	0	1
1	1	1	0	Input / Output Fiber 15	1	1	1	0
1	1	1	1	Input / Output Fiber 16	1	1	1	1

Logic Levels

Command	Minimum (V)	Maximum (V)
High Level Input Voltage, 1	2.0	-
Low Level Input Voltage, 0	0.0	0.8
High Level Output Voltage, 1	2.4	-
Low Level Output Voltage, 0	0.0	0.4

Operation

Operating sequences are listed below:

1. Connect the switch unit with power supply. (Pin11 and Pin13, Pin14 connect to $+5.0 \mathrm{VDC}, \mathrm{Pin} 12$, Pin15, Pin16 connects to GND)
2. Use the Pin1 to Pin4 (S0 to S3) to switch the switch unit to the selected path.
3. Use the Pin6 ~ Pin9 ($\mathrm{MO} \sim \mathrm{M} 3$) to monitor the selected path of the switch unit.

Note:
(1) When Pin1~ Pin4 are open, but the switch unit is connected to the power supply, the switch unit is in Input / Output Fiber 16.
(2) LLI 1×16 switch is basically a latching type design. In initial stage, it is setup in channel one. It will be latched in the terminated channel used while power off. And it is also in the terminated channel used at last time when power is on again. Furthermore, user can directly switch on to any other channel they want except channel one while power is on again. To switch on to the initial stage, channel one, user needs to switch on to any other channel first, such as channel two or six and so on, then switches on to channel one.

Ordering Information

- Do not open the case of LLI's product without authorization to maintain warranty.

