Kokyo

Email ：info＠symphotony．com
Web ：https：／／www．symphotony．com／

4x4 Industrial Bypass Optical Switch－Advance

Product Description

The 4×4 Industrial Bypass Optical Switch utilizes fiber－to－fiber technology over an angled surface to achieve ultra low losses and crosstalk．It is an external Optical Bypass Box for $10 / 1 \mathrm{Gbps}$ fiber Gigabit Ethernet networks．The 4×4 Optical Bypass Box protects from network failures and is easy to implement network maintenance by ensuring network integrity．It is suitable for all bi－directional protection switching applications where premise－side connectivity is not required in the bypass state．The optical bypass box provides excellent performance on your network and posses the advantages of compact and competitive cost．Lightwave Link 4×4 Industrial Bypass Optical Switch fully complies with RoHS Directive 2002／95／EC（2008／385／EC）．

Features

－Compact Format
－Low Return－Loss
－Available in Single Mode／Multi Mode
－Non－Latching Type
－LED indicators for Power and OSW status
－Power on Time Delay
－DIN Type Mounted

Applications

－Node Bypass Protection
－Network Maintenance
－Industrial Ethernet Ring Switch
－Intrusion Prevention System
－SDH ADM Ring
－WAN Optimization
－High Performance Server

Performance Specification

Parameter	$9 \mu \mathrm{~m}$ Core Single Mode			$50 \mu \mathrm{~m}$ or $62.5 \mu \mathrm{~m}$ Core Multi Mode			Unit
	Min．	Typ．	Max．	Min．	Typ．	Max．	
Wavelength Range ${ }^{1}$	1260～1630			850／1300			nm
Straight Insertion Loss ${ }^{2}$		0.5	1.0		0.4	0.8	dB
Bypass Insertion Loss ${ }^{2}$		0.8	1.6		0.6	1.3	
Return Loss		－50					dB
PDL			0.1				dB
WDL			0.3				dB
Crosstalk		－80			－80		dB
Repeatability			± 0.1			± 0.1	dB
Switching Time ${ }^{3}$			5			5	ms
Absolute Optical Input Power			500			500	mW
Operating Voltage	12～48						VDC
Power Consumption	$750 \pm 10 \%$						mW
EMI Certification	FCC Class B						
Switching Life Expectancy	3×10^{7}			3×10^{7}			Cycles
Operation Temperature－Normal	－5		70	－5		70	${ }^{\circ} \mathrm{C}$
Operation Temperature－Special	－20		70	－20		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	－40		85	－40		85	${ }^{\circ} \mathrm{C}$
Operation Humidity	5		85	5		85	\％RH
Storage Humidity	5		85	5		85	\％RH
Dimension（ $\mathrm{H}^{*} \mathrm{~W} * \mathrm{~L}$ ）	$26 \times 95 \times 140$						mm
Weight ${ }^{4}$	510						g

1．Special wavelength would be upon request．
2．Optical parameters excluded connectors．
3．A minimum $\geqq 20 \mathrm{~ms}$ pulse is recommended for latching type of switch．
4．The product weight excluded optical connectors．

Function Diagram

Physical Dimension

Connecting to the network

1. Connect Network Port A (TX1/RX1) to the appropriate switch, server or router device.
2. Connect Network Port B (TX2/RX2) to the appropriate switch, server or router device.
3. Verify that the Bypass Switch Network Ports are cabled in-line between two devices.

Connecting to the in-line device

1. Connect In-line Port A (AO/A1) to the in-line device using a LC/PC patch cord.
2. Connect In-line Port B (BO/B1) to the in-line device using a LC/PC patch cord.
3. Verify that the Switch In-line Ports are cabled in-line between two devices.
4. Making sure you connect the switches' power supply to the same power sources that in-line appliance is using.

Application Examples

- Normal Mode

VDC connect

- Bypass Node

VDC Broken

Ordering Information

| FOBBC - | 4- | 4- | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

