2x4 Bypass Optical Switch

Product Description

Lightwave Link Inc． 2×4 Bypass optical switch with R15 Corning ${ }^{\star}$ ClearCurve ${ }^{\circledR}$ XB or equivalent Optical Fiber is designed for use in optical fiber communication networks and measurement instruments．The switch consists of two ports that selectively transmits，redirects，or blocks optical power in a fiber optic transmission line．The optical switch must be actuated to select or change between two states．Furthermore，for the Latching type，it only takes an electrical pulse width with duration $\geqq 20 \mathrm{msec}$ to change the state．As a result，it consumes low electric energy to operate the optical switch． Lightwave Link Inc．2x4 Bypass optical switch fully complies with RoHS Directive 2002／95／EC（2008／385／EC）．

Features
－Smallest Size
－Low Insertion－Loss
－Fast Switching Speed
－PCB Mountable
－Available in Single Mode／Multi Mode
－RoHS Compliance

Applications

－Optical network protection and restoration
－Optical network monitoring
－Reconfigurable add／drop multiplexers
－Transmission equipment protection
－Research and development
－Wavelength router

Performance Specification

Parameter	$9 \mu \mathrm{~m}$ Core Single Mode		$50 \mu \mathrm{~m}$ or $62.5 \mu \mathrm{~m}$ Core Multi Mode			Unit
	Min．	Typ．Max．	Min．	Typ．	Max．	
Wavelength Range ${ }^{1}$	1260～1630		850／1300			nm
Straight Insertion Loss ${ }^{2}$		1.0			0.5	dB
Bypass Insertion Loss ${ }^{2}$		2.0			1.0	dB
Return Loss	－50					dB
PDL		0.1				d
WDL		0.3				dB
Crosstalk	－80		－80			dB
Repeatability		± 0.1			± 0.1	dB
Switching Time ${ }^{3}$		3.5			3.5	ms
Absolute Optical Input Power		500			500	mW
Operating Current	Latching：40 $\pm 10 \%$／Non－Latching： $28 \pm 10 \%$					mA
Operating Voltage	4.5	5.0 5．5	4.5	5.0	5.5	VDC
Power Consumption	Latching： $200 \pm 10 \%$／Non－Latching： $140 \pm 10 \%$					mW
Switching Life Expectancy	3×10^{7}		3×10^{7}			Cycles
Operation Temperature－Normal	－5	70	－5		70	${ }^{\circ} \mathrm{C}$
Operation Temperature－Special	－20	70	－20		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	－40	85	－40		85	${ }^{\circ} \mathrm{C}$
Operation Humidity	5	95	5		95	\％RH
Storage Humidity	5	95	5		95	\％RH
Dimension（ $\mathrm{H}^{*} \mathrm{~W}^{*} \mathrm{~L}$ ）	$7.6 \times 11 \times 22.6$					mm
Ring Size	Inner ring dimension ≥ 4					cm
Weight ${ }^{\text {a }}$	10					g

1．Special wavelength would be upon request．
2．Optical parameters excluded connectors．
3．A minimum $\geqq 20 \mathrm{~ms}$ pulse is recommended for latching type of switch．
4．The product weight excluded optical connectors．

Function Diagram

Physical Dimension

PIN Description

Pin Number	Latching Pin Function	Non-Latching Pin Function
1	Bypass activation terminal(+)	N/C
2	Straight Monitor	Straight Monitor
3	Monitor Common	Monitor Common
4	Bypass Monitor	Bypass Monitor
5	Bypass activation terminal(-)	Straight activation terminal(+)
6	Straight activation terminal(-)	Straight activation terminal(-)
7	Bypass Monitor	Bypass Monitor
8	Monitor Common	Monitor Common
9	Straight Monitor	Straight Monitor
10	Straight activation terminal(+)	N/C

Operation of the Optical Switch

| Relay
 Type | OSW State |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Ordering Information

Application Circuitry for Latching Type

To provide sufficient power to switch, two application circuits using 2N2222 BJT and ULN2003 Darlington pair IC are showed below.

The Recommend Circuitry for So and S1 Stand High Level Simultaneously

S0 = High, S1 = High.
The OSW maintains on the last changed state.

Application Circuitry for Non.-Latching Type

To provide sufficient power to switch, two application circuits using 2N2222 BJT and ULN2003 Darlington pair IC are showed below.

SO = Low. To change the OSW state to default mode (Dual CH1). SO = High. To change the OSW state to Dual CH2 .

